Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Mustafa Odabașoğlu, ${ }^{\text {a }}$ * Orhan Büyükgüngör ${ }^{\text {b }}$ and Cliğdem Albayrak ${ }^{\text {a }}$
 ${ }^{\text {a }}$ Department of Chemistry, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, and ${ }^{\mathbf{b}}$ Department of Physics, Ondokuz Mayıs University, TR-55139 Samsun, Turkey

Correspondence e-mail: muodabas@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.027$
$w R$ factor $=0.073$
Data-to-parameter ratio $=17.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

O,O-Bis(2-tert-butyl-4-methoxyphenyl) chlorothiophosphonate

The title compound, $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{ClO}_{4} \mathrm{PS}$, displays distorted tetrahedral geometry around the P atom. The dihedral angle between the benzene rings is $41.2(2)^{\circ}$. Because of the steric effects of the tert-butyl groups, the aromatic rings have unusual endocyclic angles. The molecules are linked by weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

Comment

In the course of a systematic structural investigation of thiophosphorus compounds, the structure of the title compound, (I), was determined. This investigation brings another contribution to our previous studies (Odabaşoğlu et al., 1992, 1999, 2005; Yılmaz et al., 1998; Büyükgüngör et al., 1995; Odabaşoğlu \& Gümrükçuoğlu, 1993).

(I)

An ORTEP-3 (Farrugia, 1997) view of (I) and a packing diagram are shown in Figs. 1 and 2, respectively. Compound (I) has no classical hydrogen bonds but there are two $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions: $\mathrm{H} 31 A \cdots C g 1=2.726 \AA$ and $\mathrm{C} 31-\mathrm{H} 31 A \cdots C g 1=$ $144^{\circ}\left(C g 1\right.$ is the centroid of the $\mathrm{C1}^{i}-\mathrm{C}^{\mathrm{i}}$ ring), and $\mathrm{H} 11 A \cdots C g 2=2.764 \AA$ and $\mathrm{C} 31-\mathrm{H} 31 A \cdots C g 1=141^{\circ}[C g 2$ is the centroid of the $\mathrm{C} 21^{\mathrm{ii}}-\mathrm{C} 26^{\mathrm{ii}}$ ring; symmetry codes: (i) $x-\frac{1}{2}$, $\frac{1}{2}-y, z-\frac{1}{2}$; (ii) $\left.\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z\right]$. The dihedral angle between the benzene rings in (I) is 41.2 (2) ${ }^{\circ}$. Selected bond distances and angles for (I) are given in Table 1. As in O, O -

Figure 1
A view of (I), with the atom-numbering scheme and 50% probability displacement ellipsoids.

Received 1 July 2005 Accepted 7 July 2005 Online 13 July 2005

Figure 2
A view of the packing of (I); $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions are drawn as dashed lines.
bis(2-tert-butyl-4-methoxylphenyl)phosphorochloridothioate (Odabaşoğlu et al., 2005), the $\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5, \mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$, $\mathrm{C} 21-\mathrm{C} 26-\mathrm{C} 25$ and $\mathrm{C} 23-\mathrm{C} 24-\mathrm{C} 25$ angles and $\mathrm{C}-\mathrm{C}$ bond distances (Table 1) in the benzene rings are unusual; the diversity of the angles is probably due to steric effects of the tert-butyl groups.

The geometry about the P atom corresponds to a distorted tetrahedron, with the $\mathrm{O}-\mathrm{P}-\mathrm{O}$ angles smaller than the ideal tetrahedral angle of 109.5° (Table 1). The $\mathrm{P}=\mathrm{S}$ and $\mathrm{P}-\mathrm{O}$ bond lengths agrees with those reported previously (International Tables for X-ray Crystallography, 1983, Vol. III; Odabaşoğlu et al., 1992, 2005; Yılmaz et al., 1998; Büyükgüngör et al., 1995).

Experimental

Compound (I) was prepared by the method of Odabaşoğlu et al. (2005), using 2-tert-butyl-4-methoxyphenol and PSCl_{3} as starting materials. Crystals of (I) suitable for single-crystal X-ray diffraction were grown by slow evaporation of a solution in n-hexane (yield 77%, m.p. 423 K). Analysis calculated: C 57.83 , H 6.57%; found: C 57.36 , H 6.38\%.

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{ClO}_{4} \mathrm{PS}$
$M_{r}=456.94$
Monoclinic, $C c$
$a=23.592(3) \AA$
$b=8.3111(6) \AA$
$c=12.5067(14) \AA$
$\beta=105.740(9)^{\circ}$
$V=2360.3(4) \AA^{3}$
$Z=4$

Data collection

Stoe IPDS-II diffractometer

 ω scansAbsorption correction: integration
(X-RED32; Stoe \& Cie, 2002)
$T_{\min }=0.824, T_{\max }=0.869$
16485 measured reflections 4630 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.074$
$S=1.12$
4630 reflections
270 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0348 P)^{2}\right.$
$+1.103 P]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$

$$
\begin{aligned}
& 4160 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.032 \\
& \theta_{\max }=26.0^{\circ} \\
& h=-28 \rightarrow 28 \\
& k=-10 \rightarrow 10 \\
& l=-15 \rightarrow 15
\end{aligned}
$$

$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.18 \mathrm{e}^{\circ} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.23 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0038 (3)
Absolute structure: Flack (1983),
with 2303 Friedel pairs
Flack parameter $=0.51(1)$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

C1-C6	$1.373(6)$	C22-C23	$1.465(6)$
C1-O1	$1.402(5)$	C23-C24	$1.330(6)$
C1-C2	$1.446(5)$	C24-C25	$1.457(5)$
C2-C3	$1.347(6)$	C25-C26	$1.355(6)$
C3-C4	$1.463(6)$	O1-P1	$1.583(3)$
C4-C5	$1.338(6)$	O3-P1	$1.564(3)$
C5-C6	$1.412(5)$	$\mathrm{P} 1-\mathrm{S} 1$	$1.9740(18)$
C21-C22	$1.372(5)$	$\mathrm{P} 1-\mathrm{C} 11$	$1.9848(18)$
C21-O3	$1.451(5)$		
C6-C1-O1	$121.8(4)$	C26-C25-C24	$118.0(4)$
C6-C1-C2	$121.0(4)$	C25-C26-C21	$119.3(4)$
O1-C1-C2	$117.2(4)$	C21-O3-P1	$126.4(3)$
C3-C2-C1	$117.9(4)$	C24-O4-C31	$115.9(3)$
C2-C3-C4	$120.7(4)$	O3-P1-O1	$97.13(5)$
C5-C4-C3	$120.1(4)$	O3-P1-S1	$112.66(14)$
C4-C5-C6	$120.3(4)$	O1-P1-S1	$112.02(15)$
C1-C6-C5	$119.9(4)$	O3-P1-Cl1	$110.44(15)$
C22-C21-O3	$118.0(3)$	O1-P1-Cl1	$110.26(14)$
C23-C24-C25	$120.7(4)$	S1-P1-Cl1	$113.24(2)$

All H atoms were refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ $\left[U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}\right.$ (parent atom) $]$ for aromatic H atoms and $\mathrm{C}-\mathrm{H}=$ $0.96 \AA\left[U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\right.$ parent atom $\left.)\right]$ for methyl H atoms. The crystal investigated was an inversion twin. The ratio of the two twin components refined to 0.51 (1):0.49 (1).

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Büyükgüngör, O., Odabaşoğlu, M., Gümrükçüoğlu, İ. E., Eichhorn, E. \& Mattern, G. (1995). Acta Cryst. C51, 1207-1209.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Odabaşoğlu, M., Büyükgüngör, O. \& Albayrak, Ç. (2005). Acta Cryst. E61, o2525-o2527.
Odabaşoğlu, M. \& Gümrükçüoğlu, İ. E. (1993). Doğa Turk. J. Chem. 17, 2932.

Odabaşoğlu, M., Gümrükçüoğlu, İ. E. \& Taprama, R. (1999). Phosphorus, Sulfur and Silicon, 152, 27-34.

organic papers

Odabaşoğlu, M., Gümrükçüoğlu, İ. E., Yılmaz, V. T. \& Howie, R. A. (1992). Doğa Turk. J. Chem. 16, 293-298.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Stoe \& Cie (2002). X - A REA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany
Yılmaz, V. T., Odabaşoğlu, M. \& Howie, R. A. (1998). Doğa Turk. J. Chem. 22, 409-413.

Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Mustafa Odabașoğlu, ${ }^{\text {a }}$ O Orhan Büyükgüngör ${ }^{\text {b }}$ and Çiğdem Albayrak ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, and
${ }^{\mathbf{b}}$ Department of Physics, Ondokuz Mayıs University, TR-55139 Samsun, Turkey

Correspondence e-mail: orhanb@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
Disorder in main residue
R factor $=0.028$
$w R$ factor $=0.073$
Data-to-parameter ratio $=12.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

C 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

O,O-Bis(2-tert-butyl-4-methoxyphenyl) chlorothiophosphonate. Corrigendum.

In the original report by Odabaşoğlu, Büyükgüngör \& Albayrak [Acta Cryst. (2005), E61, o2528-o2530], the structure was reported in the incorrect space group Cc. The structure is now reported as disordered in the correct space group $C 2 / c$. The P atom lies on a twofold rotation axis. A revised description of the hydrogen bonding is also given.

Comment

An ORTEP-3 (Farrugia, 1997) view of (I) and a packing diagram are shown in Figs. 1 and 2, respectively. The P atom lies on a twofold rotation axis, eading to disorder of the Cl and S atoms. Compound (I) has no classical hydrogen bonds, but there are two $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions: $\mathrm{H} 8 A \cdots C g 1=3.12$ (2) \AA and $\mathrm{C} 8-\mathrm{H} 8 A \cdots C g 1=122.8(2)^{\circ}(C g 1$ is the centroid of the $\mathrm{C}_{1}{ }^{\mathrm{ii}}-\mathrm{C} 6^{\mathrm{ii}}$ ring), and $\mathrm{H} 11 A \cdots \mathrm{Cg} 2=2.71$ (2) \AA and $\mathrm{C} 11-$ $\mathrm{H} 11 A \cdots C g 2=142.7(1)^{\circ}\left(C g 2\right.$ is the centroid of the $\mathrm{C}^{\mathrm{iiii}}-\mathrm{C}^{\mathrm{iiii}}$

Figure 1
A view of (I), with the atom-numbering scheme and 50% probability displacement ellipsoids.[Symmetry code: (i) $-x+1, y,-z+\frac{1}{2}$]

A view of the packing of (I); $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions are drawn as dashed lines.
ring) [symmetry codes: (ii) $x, 1-y, \frac{1}{2}+z$; (iii) $\left.\frac{1}{2}-x, \frac{1}{2}-y,-z\right]$. The dihedral angle between the symmetry-related benzene rings is $41.2(2)^{\circ}$. Selected bond distances and angles are given in Table 1.

Experimental

Crystal data
$\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{ClO}_{4} \mathrm{PS}$
$M_{r}=456.94$
Monoclinic, $C 2 / c$
$a=23.592(3) \AA$
$b=8.3111(6) \AA$
$c=12.5067(14) \AA$
$\beta=105.740(9))^{\circ}$
$V=2360.3(4) \AA^{3}$
$Z=4$

Data collection

Stoe IPDS-II diffractometer ω scans
Absorption correction: integration
(X-RED32; Stoe \& Cie, 2002)
$T_{\text {min }}=0.824, T_{\text {max }}=0.869$
16485 measured reflections
2327 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.073$
$S=1.08$
2327 reflections
192 parameters
All H-atom parameters refined
$D_{x}=1.286 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 16485 reflections
$\theta=1.7-26.7^{\circ}$
$\mu=0.34 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
Prism, colorless
$0.64 \times 0.59 \times 0.55 \mathrm{~mm}$

2146 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.032$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-28 \rightarrow 28$
$k=-10 \rightarrow 10$
$l=-15 \rightarrow 15$

$$
\begin{aligned}
& \begin{array}{c}
w=1 /
\end{array} {\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0362 P)^{2}\right.} \\
&+1.6163 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.002 \\
& \Delta \rho_{\max }=0.17 \mathrm{e}^{-3} \mathrm{~A}^{-3} \\
& \Delta \rho_{\min }=-0.34 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{C} 1-\mathrm{C} 2$	$1.3946(18)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.4017(19)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.4086(17)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.4088(18)$
$\mathrm{C} 1-\mathrm{O} 1$	$1.4226(14)$	$\mathrm{O} 1-\mathrm{P} 1$	$1.5750(9)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.3860(18)$	$\mathrm{P} 1-\mathrm{S} 1^{\mathrm{i}}$	$1.9791(4)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.3979(18)$	$\mathrm{P} 1-\mathrm{C} 11$	$1.9791(4)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$123.25(11)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$121.99(12)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 1$	$119.13(11)$	$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$115.48(11)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{O} 1$	$117.58(11)$	$\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 1^{\mathrm{i}}$	$97.08(7)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$119.77(12)$	$\mathrm{O} 1-\mathrm{P} 1-\mathrm{S} 1^{\mathrm{i}}$	$111.27(4)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$119.11(12)$	$\mathrm{O} 1-\mathrm{P} 1-\mathrm{Cl} 1$	$111.44(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$120.39(11)$	$\mathrm{S} 1^{\mathrm{i}}-\mathrm{P} 1-\mathrm{Cl} 1$	$113.26(3)$

Symmetry code: (i) $-x+1, y,-z+\frac{1}{2}$.

All H atoms were refined freely. Atoms S1 and Cl1 were assigned to the same atomic site and refined freely with the same atomic coordinates and with fixed site-occupancy factors of 0.5 .

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X - A REA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany

