organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Mustafa Odabaşoğlu,^a* Orhan Büyükgüngör^b and Çiğdem Albayrak^a

^aDepartment of Chemistry, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, and ^bDepartment of Physics, Ondokuz Mayıs University, TR-55139 Samsun, Turkey

Correspondence e-mail: muodabas@omu.edu.tr

Key indicators

Single-crystal X-ray study T = 150 K Mean σ (C–C) = 0.007 Å R factor = 0.027 wR factor = 0.073 Data-to-parameter ratio = 17.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

O,O-Bis(2-*tert*-butyl-4-methoxyphenyl) chlorothiophosphonate

The title compound, $C_{22}H_{30}ClO_4PS$, displays distorted tetrahedral geometry around the P atom. The dihedral angle between the benzene rings is 41.2 (2)°. Because of the steric effects of the *tert*-butyl groups, the aromatic rings have unusual endocyclic angles. The molecules are linked by weak $C-H\cdots\pi$ interactions.

Received 1 July 2005 Accepted 7 July 2005 Online 13 July 2005

Comment

In the course of a systematic structural investigation of thiophosphorus compounds, the structure of the title compound, (I), was determined. This investigation brings another contribution to our previous studies (Odabaşoğlu *et al.*, 1992, 1999, 2005; Yılmaz *et al.*, 1998; Büyükgüngör *et al.*, 1995; Odabaşoğlu & Gümrükçuoğlu, 1993).

An *ORTEP-3* (Farrugia, 1997) view of (I) and a packing diagram are shown in Figs. 1 and 2, respectively. Compound (I) has no classical hydrogen bonds but there are two $C-H\cdots\pi$ interactions: H31 $A\cdots Cg1 = 2.726$ Å and C31-H31 $A\cdots Cg1 = 144^{\circ}$ (*Cg*1 is the centroid of the C1ⁱ-C6ⁱ ring), and H11 $A\cdots Cg2 = 2.764$ Å and C31-H31 $A\cdots Cg1 = 141^{\circ}$ [*Cg2* is the centroid of the C21ⁱⁱ-C26ⁱⁱ ring; symmetry codes: (i) $x - \frac{1}{2}$, $\frac{1}{2} - y, z - \frac{1}{2}$; (ii) $\frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} + z$]. The dihedral angle between the benzene rings in (I) is 41.2 (2)°. Selected bond distances and angles for (I) are given in Table 1. As in *O*,*O*-

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1 A view of (I), with the atom-numbering scheme and 50% probability displacement ellipsoids.

4160 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.032$

 $\theta_{\rm max} = 26.0^{\circ}$

 $h = -28 \rightarrow 28$

 $k = -10 \rightarrow 10$ $l = -15 \rightarrow 15$

Figure 2 A view of the packing of (I); $C-H\cdots\pi$ interactions are drawn as dashed lines.

bis(2-tert-butyl-4-methoxylphenyl)phosphorochloridothioate (Odabasoğlu et al., 2005), the C1-C6-C5, C3-C4-C5, C21-C26-C25 and C23-C24-C25 angles and C-C bond distances (Table 1) in the benzene rings are unusual; the diversity of the angles is probably due to steric effects of the tert-butyl groups.

The geometry about the P atom corresponds to a distorted tetrahedron, with the O-P-O angles smaller than the ideal tetrahedral angle of 109.5° (Table 1). The P=S and P-O bond lengths agrees with those reported previously (International Tables for X-ray Crystallography, 1983, Vol. III; Odabaşoğlu et al., 1992, 2005; Yılmaz et al., 1998; Büyükgüngör et al., 1995).

Experimental

Compound (I) was prepared by the method of Odabaşoğlu et al. (2005), using 2-tert-butyl-4-methoxyphenol and PSCl₃ as starting materials. Crystals of (I) suitable for single-crystal X-ray diffraction were grown by slow evaporation of a solution in *n*-hexane (yield 77%, m.p. 423 K). Analysis calculated: C 57.83, H 6.57%; found: C 57.36, H 6.38%.

Crystal data

C22H30ClO4PS $D_x = 1.286 \text{ Mg m}^{-3}$ $M_r = 456.94$ Mo $K\alpha$ radiation Cell parameters from 16485 Monoclinic, Cc a = 23.592 (3) Å reflections b = 8.3111 (6) Å $\theta = 1.7 - 26.7^{\circ}$ $\mu = 0.34 \text{ mm}^{-1}$ c = 12.5067 (14) Å $\beta = 105.740 (9)^{\circ}$ T = 150 K $V = 2360.3 (4) \text{ Å}^3$ Prism, colourless Z = 4 $0.64 \times 0.59 \times 0.55 \ \mathrm{mm}$

Data collection

Stoe IPDS-II diffractometer ω scans Absorption correction: integration (X-RED32; Stoe & Cie, 2002) $T_{\min} = 0.824, \ T_{\max} = 0.869$ 16485 measured reflections 4630 independent reflections

Refinement

Refinement on F^2 $(\Delta/\sigma)_{\rm max} < 0.001$ $R[F^2 > 2\sigma(F^2)] = 0.027$ wR(F²) = 0.074 $\Delta \rho_{\rm max} = 0.18 \ {\rm e} \ {\rm \AA}$ $\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$ S = 1.12Extinction correction: SHELXL97 4630 reflections Extinction coefficient: 0.0038 (3) 270 parameters Absolute structure: Flack (1983), H-atom parameters constrained with 2303 Friedel pairs $w = 1/[\sigma^2(F_0^2) + (0.0348P)^2$ Flack parameter = 0.51(1)+ 1.103P] where $P = (F_0^2 + 2F_c^2)/3$

Table 1

Se

Selected geometric parameters (A, °).				
C1-C6	1.373 (6)	C22-C23	1.465 (6)	
C1-O1	1.402 (5)	C23-C24	1.330 (6)	
C1-C2	1.446 (5)	C24-C25	1.457 (5)	
C2-C3	1.347 (6)	C25-C26	1.355 (6)	
C3-C4	1.463 (6)	O1-P1	1.583 (3)	
C4-C5	1.338 (6)	O3-P1	1.564 (3)	
C5-C6	1.412 (5)	P1-S1	1.9740 (18)	
C21-C22	1.372 (5)	P1-Cl1	1.9848 (18)	
C21-O3	1.451 (5)			
C6-C1-O1	121.8 (4)	C26-C25-C24	118.0 (4)	
C6-C1-C2	121.0 (4)	C25-C26-C21	119.3 (4)	
O1-C1-C2	117.2 (4)	C21-O3-P1	126.4 (3)	
C3-C2-C1	117.9 (4)	C24-O4-C31	115.9 (3)	
C2-C3-C4	120.7 (4)	O3-P1-O1	97.13 (5)	
C5-C4-C3	120.1 (4)	O3-P1-S1	112.66 (14)	
C4-C5-C6	120.3 (4)	O1-P1-S1	112.02 (15)	
C1-C6-C5	119.9 (4)	O3-P1-Cl1	110.44 (15)	
C22-C21-O3	118.0 (3)	O1-P1-Cl1	110.26 (14)	
C23-C24-C25	120.7 (4)	S1-P1-Cl1	113.24 (2)	

All H atoms were refined using a riding model, with C-H = 0.93 Å $[U_{iso}(H) = 1.2U_{eq}(\text{parent atom})]$ for aromatic H atoms and C-H = 0.96 Å $[U_{iso}(H) = 1.5U_{eq}(\text{parent atom})]$ for methyl H atoms. The crystal investigated was an inversion twin. The ratio of the two twin components refined to 0.51 (1):0.49 (1).

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

- Büyükgüngör, O., Odabaşoğlu, M., Gümrükçüoğlu, İ. E., Eichhorn, E. & Mattern, G. (1995). Acta Cryst. C51, 1207-1209.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Odabaşoğlu, M., Büyükgüngör, O. & Albayrak, Ç. (2005). Acta Cryst. E61, 02525-02527.
- Odabaşoğlu, M. & Gümrükçüoğlu, İ. E. (1993). Doğa Turk. J. Chem. 17, 29-32.
- Odabaşoğlu, M., Gümrükçüoğlu, İ. E. & Taprama, R. (1999). Phosphorus, Sulfur and Silicon, 152, 27-34.

- Odabaşoğlu, M., Gümrükçüoğlu, İ. E., Yılmaz, V. T. & Howie, R. A. (1992). Doğa Turk. J. Chem. 16, 293–298.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Stoe & Cie (2002). *X-AREA* (Version 1.18) and *X-RED32* (Version 1.04). Stoe & Cie, Darmstadt, Germany.
- Yılmaz, V. T., Odabaşoğlu, M. & Howie, R. A. (1998). *Doğa Turk. J. Chem.* 22, 409–413.

addenda and errata

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Mustafa Odabaşoğlu,^a* Orhan Büyükgüngör^b and Çiğdem Albayrak^a

^aDepartment of Chemistry, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, and ^bDepartment of Physics, Ondokuz Mayıs University, TR-55139 Samsun, Turkey

Correspondence e-mail: orhanb@omu.edu.tr

Key indicators

Single-crystal X-ray study T = 150 KMean $\sigma(\text{C}-\text{C}) = 0.002 \text{ Å}$ Disorder in main residue R factor = 0.028 wR factor = 0.073 Data-to-parameter ratio = 12.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

O,O-Bis(2-*tert*-butyl-4-methoxyphenyl) chlorothiophosphonate. Corrigendum.

In the original report by Odabaşoğlu, Büyükgüngör & Albayrak [*Acta Cryst.* (2005), E**61**, o2528–o2530], the structure was reported in the incorrect space group *Cc*. The structure is now reported as disordered in the correct space group C2/c. The P atom lies on a twofold rotation axis.A revised description of the hydrogen bonding is also given.

Received 8 August 2005 Accepted 5 September 2005 Online 17 September 2005

Comment

An *ORTEP-3* (Farrugia, 1997) view of (I) and a packing diagram are shown in Figs. 1 and 2, respectively. The P atom lies on a twofold rotation axis, eading to disorder of the Cl and S atoms. Compound (I) has no classical hydrogen bonds, but there are two $C-H\cdots\pi$ interactions: $H8A\cdots Cg1 = 3.12$ (2) Å and $C8-H8A\cdots Cg1 = 122.8$ (2)° (*Cg1* is the centroid of the C1ⁱⁱ-C6ⁱⁱ ring), and $H11A\cdots Cg2 = 2.71$ (2) Å and C11- $H11A\cdots Cg2 = 142.7$ (1)° (*Cg2* is the centroid of the C1ⁱⁱⁱ-C6ⁱⁱⁱ)

Figure 1

A view of (I), with the atom-numbering scheme and 50% probability displacement ellipsoids [Symmetry code: (i) -x + 1, y, $-z + \frac{1}{2}$]

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved A view of the packing of (I); $C-H\cdots\pi$ interactions are drawn as dashed lines.

ring) [symmetry codes: (ii) x, 1 - y, $\frac{1}{2} + z$; (iii) $\frac{1}{2} - x$, $\frac{1}{2} - y$, -z]. The dihedral angle between the symmetry-related benzene rings is 41.2 (2)°. Selected bond distances and angles are given in Table 1.

Experimental

Crystal data

 $\begin{array}{l} C_{22}H_{30}{\rm ClO_4PS} \\ M_r = 456.94 \\ {\rm Monoclinic}, \ C2/c \\ a = 23.592 \ (3) \ {\rm \AA} \\ b = 8.3111 \ (6) \ {\rm \AA} \\ c = 12.5067 \ (14) \ {\rm \AA} \\ \beta = 105.740 \ (9)^\circ \\ V = 2360.3 \ (4) \ {\rm \AA}^3 \\ Z = 4 \end{array}$

Data collection

Stoe IPDS-II diffractometer ω scans Absorption correction: integration (X-RED32; Stoe & Cie, 2002) $T_{min} = 0.824, T_{max} = 0.869$ 16485 measured reflections 2327 independent reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.073$ S = 1.082327 reflections 192 parameters All H-atom parameters refined $D_x = 1.286 \text{ Mg m}^{-3}$ Mo K α radiation Cell parameters from 16485 reflections $\theta = 1.7-26.7^{\circ}$ $\mu = 0.34 \text{ mm}^{-1}$ T = 150 KPrism, colorless 0.64 × 0.59 × 0.55 mm

2146 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.032$ $\theta_{\text{max}} = 26.0^{\circ}$ $h = -28 \rightarrow 28$ $k = -10 \rightarrow 10$ $l = -15 \rightarrow 15$

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0362P)^{2} + 1.6163P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3 (\Delta/\sigma)_{max} = 0.002 \Delta\rho_{max} = 0.17 \text{ e} \text{ Å}^{-3} \Delta\rho_{min} = -0.34 \text{ e} \text{ Å}^{-3}$

Table 1

Selected geometric parameters (Å, °).

C1-C2	1.3946 (18)	C4-C5	1.4017 (19)
C1-C6	1.4086 (17)	C5-C6	1.4088 (18)
C1-O1	1.4226 (14)	O1-P1	1.5750 (9)
C2-C3	1.3860 (18)	P1-S1 ⁱ	1.9791 (4)
C3-C4	1.3979 (18)	P1-Cl1	1.9791 (4)
C2-C1-C6	123.25 (11)	C4-C5-C6	121.99 (12)
C2-C1-O1	119.13 (11)	C1-C6-C5	115.48 (11)
C6-C1-O1	117.58 (11)	$O1 - P1 - O1^i$	97.08 (7)
C3-C2-C1	119.77 (12)	$O1-P1-S1^{i}$	111.27 (4)
C2-C3-C4	119.11 (12)	O1-P1-Cl1	111.44 (3)
C3-C4-C5	120.39 (11)	S1 ⁱ -P1-Cl1	113.26 (3)

Symmetry code: (i) $-x + 1, y, -z + \frac{1}{2}$.

All H atoms were refined freely. Atoms S1 and Cl1 were assigned to the same atomic site and refined freely with the same atomic coordinates and with fixed site-occupancy factors of 0.5.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.